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Abstract. The influence of surface defects on the critical properties of magnetic films is studied for Ising
models with nearest-neighbour ferromagnetic couplings. The defects include one or two adjacent lines of
additional atoms and a step on the surface. For the calculations, both density-matrix renormalization
group and Monte Carlo techniques are used. By changing the local couplings at the defects and the film
thickness, non-universal features as well as interesting crossover phenomena in the magnetic exponents are
observed.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 68.35.Rh Phase transitions and critical
phenomena – 75.30.Pd Surface magnetism

1 Introduction

Critical phenomena of magnetic films are of current in-
terest, both experimentally and theoretically [1–5]. In the
limiting cases of one layer and of infinitely many layers,
one deals with two-dimensional magnets [6] and with stan-
dard bulk and surface magnetism [7–10], respectively. For
systems consisting of a finite number of layers, interest-
ing crossover phenomena between these limiting cases are
expected.

In this article, we shall consider critical properties of
ferromagnetic films of Ising magnets with various imper-
fections at the surface, motivated partly by possible exper-
imental realizations of magnetic thin films with stripes of
magnetic adatoms and stepped surfaces [1,11,12], partly
by genuine theoretical interest. Imperfections may be due
to regular or irregular changes in the surface couplings or
due to additional structures on the surface. A simple ex-
ample of the first case is a ladder of modified couplings
in an otherwise uniform two-dimensional system as intro-
duced by Bariev [13], see Figure 1a. We will study this
briefly, since it can serve as a testing ground. Our main
interest, however, is in additional structures, as depicted
in Figures 1b–d. Thus we will investigate surfaces with
magnetic adatoms in the form of

• one additional straight line, Figure 1b,
• two neighbouring lines, Figure 1c,
• a straight step of unit height, Figure 1d,

for various local couplings at the defects and for films of
varying thickness.

a Present address: I-D Media AG, Weidenallee 37a, 20357
Hamburg, Germany

Previous related work on Ising models includes the
study of the step magnetization at the ordinary transi-
tion of rather thick films [14] and the study of magnetism
in thin films with rough surfaces [15].

In studying the influence of these imperfections espe-
cially on the critical behaviour, we use the density-matrix
renormalization group technique (DMRG) [16,17], being
most suitable in the case of merely one layer, and the
Monte Carlo (MC) method [18], which allows to treat films
of considerable thickness as well.

The article is organized as follows. In the next section,
we present our findings on single layers with defects, ap-
plying DMRG. The MC results on single layers and on
films with an additional line of magnetic adatoms and
with a straight step on top of the surface are discussed in
Section 3. A short summary concludes the article.

2 One layer: DMRG

The planar Ising model with line-like defects is a pecu-
liar system, because it shows non-universal magnetic ex-
ponents. This is connected with the values ν = 1 and
xs = 1/2 of the exponents for the correlation length
and the surface magnetization of the pure system, respec-
tively. A one-dimensional, energy-like perturbation then is
marginal and can change the critical behaviour continu-
ously. For this reason, the system has been the topic of var-
ious studies [6], with the focus most recently on a confor-
mal treatment (folding the lattice at the defect line which
then becomes the edge of a two-layer system) [19] and
on random systems [20]. While the simple chain and lad-
der defects considered by Bariev are solvable free-fermion
problems, the other cases we study are not integrable
and one has to use numerical methods. In the following
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Fig. 1. Geometry and interactions of Ising models with various surface imperfections: (a) ladder defect, (b) one additional line
of spins, (c) pair of adjacent lines of magnetic adatoms, and (d) straight step of monoatomic height. Usually, surface spins are
denoted by open circles, and bulk spins by full circles. In case (b), the shaded spins allow for both interpretations.

we discuss the quantity of direct physical interest, the lo-
cal magnetization at or near the defect lines.

To obtain it, we used the transfer matrix running
along the direction of the defect, see Figures 1a–c,
and determined its maximal eigenvector via the DMRG
method [21]. In this way one is treating an infinitely long
strip of width M with the defect located in the middle.
Only the infinite-system algorithm was used, in which
one enlarges the system step by step and always chooses
an optimal reduced basis via the density matrix. This is
very convenient, since one can insert different defects af-
ter the system has reached the desired size. No further
sweeps to optimize the state were made, since tests on
the ladder defect gave very good results without them.
Most calculations were done with 64 kept states and a
truncation error around 10−15. The local magnetization
m(i) was determined from the spin correlation function
C(i) = 〈σ1σi〉 for free boundary conditions, or directly
as 〈σi〉 for fixed boundary spins. The width was always
much larger than the correlation length and varied be-
tween M = 100 and M = 5000 for the temperature range
studied (0.001 < t < 0.1, where t = 1−T/Tc is the reduced
temperature). The (absolute) error in m, determined by

comparing with analytical results was at most 10−4 for a
system at t = 0.001, cut in the middle by a ladder defect.
For less severe modifications and larger values of t it was
even smaller.

In Figure 2 we show the correlation function C(i)
across the strip for ladder defects (Fig. 1a) and for an ad-
ditional line (Fig. 1b); in the DMRG study we considered
the case Jn = Js. The upper part gives an overall picture,
while the lower one shows the defect region in more de-
tail. For ladder defects the strength Jl of the defect bonds
was varied, whereas for an additional line it was the cou-
pling Ja between the line spins and the substrate. Since
C(i) factors for large distances, these curves also give the
profile of the magnetization in the bulk. One can see how
m increases or decreases near the defect, depending on
the sign of the perturbation (similar curves were obtained
in [20] for a random system). If one cuts the ladder bonds
by choosing Jl = 0, one obtains the boundary magnetiza-
tion of the homogeneous model in the middle of the strip.
On the upper side, the possible increase of m depends on
the details of the defect. It is limited if one varies Ja, be-
cause a line with infinite Ja is equivalent to a chain defect
in the plane with merely doubled bond strength.
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Fig. 2. Spin correlation function C(i) for a strip of width
M = 150 with ladder defects (below the plateau) or one ad-
ditional line of spins (above the plateau), as obtained from
DMRG calculations at the reduced temperature t = 0.072. The
defect strengths Jl/Js and Ja/Js are indicated. Upper part: to-
tal view, lower part: central region.

The temperature dependence of m is shown in Fig-
ure 3 for the spins in the plane situated below one or two
additional lines. One can see how it is increased over the
Onsager value by increasing the coupling Ja. As expected,
the effect is even stronger for two additional lines. In this
case, m has already twice the undisturbed value for the
smallest shown t. Quantitatively, this enhancement is de-
scribed by a decrease of the exponent βl, the local critical
exponent which describes the vanishing of the magnetiza-
tion near the additional line of magnetic adatoms.

To investigate this, we have analyzed the temperature
behaviour of m in terms of an effective (critical) exponent
βeff , defined by [2,14,22]

βeff(t) = ln(m(ti)/m(ti+1))/ ln(ti/ti+1) (1)

with t = (ti + ti+1)/2 (alternatively, one could choose t to
be the geometric mean t =

√
titi+1). As one approaches

the critical point, t → 0, this quantity converges to the
true local exponent βl. It is also a very sensitive indicator
for the numerical accuracy of a calculation.
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Fig. 3. Local magnetization m of the spins below one or two
additional lines as a function of temperature, for three values
of the coupling ratio Ja/Js. The lowest curve is the Onsager
result for the perfect Ising model.
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Fig. 4. Effective exponent βeff as function of the reduced tem-
perature t for one additional line and three different coupling
ratios Jl/Js. Full: Spins located below the line, dotted: spins
in the line.

Some typical results are given in Figure 4 for one ad-
ditional line and four values of the ratio Jl/Js of the cou-
plings in the line. For Jl = 0, one is treating the plane
with independent attached spins and the Onsager result
β = 0.125 is recovered with high accuracy. In the other
cases, the exponents both for the spin in the line and the
one below it are shown and one sees that the two curves
have different slopes, but a common limit for t→ 0 which
can be determined very precisely. The values for βl found
in this way are accurate to at least three digits. For the
case Ja/Js � 1 which, as mentioned, is equivalent to a
line defect in the plane, this was checked explicitly by
comparing with the analytical result. In the figure, also
a negative Jl is shown, which leads to a reduction of m
and an increase of βl over the Onsager value. In this case,
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Table 1. Numerical values for the local exponent βl of an Ising
plane with one and two additional lines of spins. The values
are accurate to the given digits, see text.

lines 1 1 2
λ Ja/Js Jl/Js Ja/Js

0.0 0.125 0.125 0.125
0.25 0.121 0.118 0.098
0.5 0.111 0.109 0.056
1.0 0.084 0.084 0.018
2.0 0.051 0.031 0.005
4.0 0.034 0.002 0.001

a limiting value 0.142 is approached rapidly for Jl/Js <
−1. This is the same effect as for a chain defect in the
plane with strong antiferromagnetic couplings [6]. In that
case, the exponent is increased up to the value 0.5 of the
free surface. The sign of Ja, on the other hand, has no
influence on the exponent.

The results for βl are collected in Table 1 and in Fig-
ure 5, where the exponent is plotted as a function of
the varied couplings (keeping the other couplings fixed
and equal to Js). For comparison also the analytical
results [6,13], for simple chain and ladder defects are
shown in Figure 5. One notes that, for a single line and
small modifications, it does not matter much whether one
changes Ja or Jl. A large Jl/Js, however, has a much more
pronounced effect than Ja/Js, since it corresponds to addi-
tional spins which are almost rigidly locked together. For
the double line, the exponent drops much faster, reaching
10−2 already around Ja/Js ∼ 1. For more additional lines,
i.e. for a terrace on the surface as in Figure 1d, this effect
would be even stronger. In this case, the magnetization
would practically jump as in a first-order transition. In-
cidentally, such a first-order transition is also expected if
one arranges many additional lines on top of each other,
such that one is dealing with a junction of three Ising
planes [23].

3 Films: Monte Carlo simulations

3.1 One additional line of spins

Extending the DMRG calculations on an Ising layer with
one additional line of spins, we did Monte Carlo simu-
lations on the corresponding Ising films, consisting of L
layers with one line of magnetic adatoms on top of the
surface, see Figure 1b. We set Jl = Js, with Ja = Jn = Js

(variant A, treating the spins directly below the additional
line as surface spins, as it was done in the DMRG study) or
Ja = Jn = Jb (variant B, treating the spins directly below
the additional line as bulk spins). In the layers, periodic
boundary conditions are used.

Let Si,j,k = ±1 be the spin on site (i, j) in the kth
layer. Taking layers of M ×N spins, the spins in the ad-
ditional line on top of the surface through the center are
located at (i = (M + 1)/2, j, k = 0), M odd, with j run-
ning from 1 to N . We computed, among others, the line
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Fig. 5. Local exponent βl as a function of the ratio of the
coupling strength λ, as defined in the figure for five different
situations. For chain and ladder defects the analytical results
are shown, otherwise the DMRG results are depicted.

magnetization m(i, k;L) defined by

m(i, k;L) =
1
N

〈∣∣∣∣∣∣
∑
j

Si,j,k

∣∣∣∣∣∣
〉
. (2)

The magnetization of the line on top of the surface, ml, is
given by ml(L)= m((M + 1)/2, k = 0;L).

In the simulations, the film thickness L ranged from 1
to 40, with layer sizes being sufficiently large to circumvent
finite-size effects (up to 161×320). To speed up computa-
tions, the single-cluster-flip algorithm was implemented.
We studied the cases (i) Js = Jb as well as (ii) Js = 2Jb

(variants A and B), which lead to the two characteristic
scenarios of surface critical phenomena for L,M,N →∞
(semi-infinite case). In the first case, bulk and surface spins
order simultaneously at temperature Tc (ordinary transi-
tion), while in the second one the surface spins order at a
higher temperature, Ts (surface transition) [7,8].

(i) At the ordinary transition of the semi-infinite Ising
model, L → ∞, the magnetization deep in the bulk
vanishes like m ∝ tβ , with t = |T − Tc|/Tc, where
β = 0.31... [24,25]. At the perfect, flat surface, one finds
m ∝ tβ1 , with β1 ≈ 0.80 [14,26]. The vanishing of the
magnetization in the additional line of spins on top of
the surface is expected to be governed by β1 as well,
i.e. βl(L → ∞) = β1 [14,27]. On the other hand, for
a single perfect layer, L = 1, it is well known that
m ∝ tβ2d , β2d = 1/8. Adding a row of spins, we ob-
tain, from the DMRG calculations, ml ∝ tβl(L=1) with
βl(L = 1) ≈ 0.084, see Table 1.

To monitor the influence of the layer thickness L at
the ordinary transition, we computed magnetization pro-
files m(i, k;L), the critical temperature Tc(L), and the
critical exponent βl(L). The dependence of the transi-
tion temperature on the thickness L has been studied be-
fore for flat films [7,15], and it is, certainly, not affected
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Fig. 6. Simulated magnetization in the additional line ml(L)
for Ising films with L layers and one additional line of spins on
the surface, choosing Js = Jb, for L ranging from 1 to 5. Each
layer consists of 81×80 spins. The critical temperatures Tc(L)
are marked by arrows.

by the presence of the additional line. In Figure 6, the
magnetization in the defect line, ml(L), is depicted as a
function of temperature for L ranging from 1 to 5, illus-
trating the increase of the transition temperature with
L. In the ordered phase, T < Tc, the line magnetization
m(i, k;L) is, in each layer, maximal for the center line,
m((M + 1)/2, k;L), see also Figure 2. The maximum is
most pronounced at k = 1 (we shall denote the magne-
tization in that line beneath the additional row of spins
by mlb = m((M + 1)/2, 1;L)), due to the increased co-
ordination number, compared to the other surface lines.
The magnetization in the additional line, ml, is suppressed
compared to mlb, because of missing neighbouring spins.

Various crossover effects show up in the effective ex-
ponent βeff(i, k;L), defined by m(i, k;L) ∝ tβeff(i,k;L), cor-
responding to the slope in a standard log-log-plot of the
temperature dependence of the magnetization [2,14,22],
see equation (1). On approach to Tc, one expects to ob-
serve the limiting cases βeff(i, k;L)→ β for k and L large,
→ β1 for k small and L large, → βl(L = 1) for L = 1
and i = (M + 1)/2, k = 0 or 1, and → β2d for L = 1 and
sufficiently far away from the additional line in the centre.

The crossover behaviour is illustrated in Figure 7,
showing βeff((M + 1)/2, k;L) for ml(L), k = 0, and
mlb(L), k = 1, with the film thickness ranging from L = 1
to 10. βeff((M + 1)/2, 0;L) decreases monotonically, ex-
cept for L = 1, over a wide range of temperatures on
lowering t, but with the effective exponent, at fixed t,
increasing clearly with the film thickness, as depicted in
Figure 7a. The data seem to indicate that the asymptotic
critical exponent βl(L), as t→ 0, of the magnetization in
the additional line of magnetic adatoms increases, how-
ever, only weakly with L, being quite small, around 0.1,
for L going up to 10 (the increase itself may be argued
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Fig. 7. Effective exponent βeff ((M + 1)/2, k;L) of the magne-
tization (a) in the additional line of spins (k = 0), ml, and (b)
in the line beneath (k = 1), mlb, for the Ising model with equal
couplings, as obtained from the MC simulations. The sizes of
the layers are up to 161 × 320 spins. Only results which are
essentially free of finite-size effects are shown.

to reflect the diminishing role of the defect line on the
two-dimensional critical fluctuations in thicker films; of
course, β(L) is bounded by 1/8 for finite L). For the mag-
netization beneath the additional line, mlb, corrections to
the asymptotics are rather large as well, see Figure 7b.
Here the effective exponent βeff((M + 1)/2, 1;L) changes
with temperature in a non-monotonic fashion, except for
L = 1. In agreement with the observations for ml, the
true critical exponent βl(L) is rather small, around 0.1,
increasing only weakly with L. The location of the maxi-
mum in βeff((M+1)/2, 1;L) indicates the temperature, at
which one crosses over from the regime dominated by two-
dimensional critical fluctuations, close to the phase tran-
sition, to the regime, further away from the critical point,
where the fluctuations are (nearly) isotropic and three-
dimensional. Thence, at the maximum the corresponding
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correlation length is argued to be about the thickness of
the film L. In the thermodynamic limit, L→∞, the max-
imum is believed to shift towards t = 0, with its height
being βl = β1 ≈ 0.80.

Note that the strong corrections to scaling, as seen by
the deviations of the effective exponents from their asymp-
totic values, may cause severe difficulties in extracting the
true critical exponents in simulations as well as in exper-
iments.

Similar crossover phenomena, now between β2d, β1 and
β, are expected to occur for the magnetization far away
from the defect line, when varying the film thickness. This
aspect, however, is of minor importance in the context of
this study.

(ii) At the surface transition of flat Ising films, the
surface magnetization vanishes, on approach to Ts, like
m ∝ tβ2d , independent of L. The critical exponent for the
magnetization at the additional line of magnetic atoms on
top of the surface, βl, with ml(lb) ∝ tβl , depends on the lo-
cal couplings at that line, as seen from our DMRG results
for L = 1. Indeed, the situation is similar to that of the
edge magnetization at the surface transition, the edge cor-
responding to an extended defect line [6,22], where non-
universality holds as well.

For Js = 2Jb and Ja = Jn = Js, variant A, one ob-
tains for a single layer, from the DMRG method, βl(L =
1) ≈ 0.084, i.e. the value is below that of the perfect two-
dimensional Ising model because of the increase in ml due
to the additional line of spins, see Figure 2. The value in-
creases weakly with layer thickness, becoming in the limit
of the semi-infinite system βl(L = ∞) = 0.091 ± 0.002,
as inferred from MC data for films with thickness L up
to 40, and reasonable extrapolations. Because the critical
fluctuations in a film of finite thickness are ultimately of
two-dimensional nature, one expects a non-universal crit-
ical behaviour at the defect line with βl depending on L.
Actually, the slight increase of the critical exponent with
L reflects the impact of the bulk spins, which now tend to
lower the magnetization in the defect line.

For Js = 2Jb and Ja = Jn = Jb, variant B, both for
single layers, L = 1, and films, the magnetization profile
m(i, k;L) close to Ts is non-monotonic exhibiting a mini-
mum at the center line i = (M + 1)/2, see Figure 8. This
minimum is due to the reduction of the couplings Jn at
the defect below the value Js elsewhere in the surface. As
one goes deeper into the bulk, the magnetization profile
smoothens, which can be readily understood.

The critical exponent describing the vanishing of ml

(or mlb) depends rather weakly on the thickness L of
the film. For L = 1, we estimate from the MC data
βl(L = 1) = 0.38 ± 0.01, i.e. a value above the Onsager
value of the perfect two-dimensional Ising model result-
ing from the decrease of the magnetization at the defect
line [6]. The effective exponent decreases on approach to
criticality, t→ 0, when considering mlb, while it increases
when considering ml, allowing to estimate βl accurately.
From data for fairly thick films, L up to 40, we estimate βl

of the semi-infinite system to be βl(L =∞) = 0.34±0.02.
The slight change of βl(L) with L for films of finite thick-
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Fig. 8. Magnetization profile m(i, k;L) at different depths k
in films with L = 40 layers and one additional line of spins
on the surface. The simulation was done for 81 × 80 spins in
each layer, couplings Js = 2Jb, Ja = Jn = Jb and temperature
T = 0.96Tc. The magnetization in the additional line itself is
ml ≈ 0.218.

ness is, again, believed to be due to the correlations of the
spins at the defect line with the bulk spins, which affect
βl in such a way that it is non-universal when the critical
fluctuations are of two-dimensional character.

3.2 Step

Finally, we briefly report our findings for the critical prop-
erties of the step magnetization. A straight step is intro-
duced (actually two steps, to allow for periodic boundary
conditions) by adding half a layer of magnetic adatoms to
the surface of the magnetic film [14], see Figure 1d. We
discriminate two couplings, Js if both neighbouring spins
are surface spins, and Jb otherwise. We consider the line
magnetization of the spins at the step edge, mse, vanishing
on approach to the transition as mse ∝ tβse .

For Js = Jb, i.e. at the ordinary transition, one ob-
tains βse ≈ 0.80 in semi-infinite Ising models, L→∞, i.e.
the same value as for the critical exponent of the surface
magnetization, as had been shown in a previous Monte
Carlo study on thick Ising films with a step [14], in agree-
ment with analytical considerations [27]. However, in thin
films, the critical behaviour is quite different. In the sim-
ulations, for a single layer L = 1 plus half a layer, we
find a critical exponent close to 1/2 (its concrete value de-
pends rather sensitively on a very accurate determination
of Tc), i.e. a value close to that of the surface critical ex-
ponent β1 of the two-dimensional Ising model (note also
its robustness against randomness in the couplings [28]).
This observation can be understood in the following way.
One is dealing with a composite system displaying, as
the layer size goes to infinity, two distinct phase transi-
tions, one at the critical temperature of the Ising plane,
kBTc(L = 1)/Js = 2.269..., and one at the critical temper-
ature of the double layer, kBTc(L = 2)/Js = 3.207±0.003.



M.-C. Chung et al.: Ising films with surface defects 661

Related composite Ising models have been investigated be-
fore [29–31], showing that on approach to the upper crit-
ical temperature, where half of the system is disordered,
the critical behaviour of the magnetization at the interface
(i.e., here, at the step) is governed by the surface critical
exponent. The same scenario is expected to hold for finite
films with Tc(L + 1) > Tc(L). However, the temperature
region where this behaviour can be observed, will become
smaller and smaller as L increases.

At the surface transition, the same considerations are
believed to be valid. Indeed, in the case Js = 2Jb, we found
βse to be quite close to 1/2 for a single layer, L = 1, plus
half a layer. For trivial reasons, βse(L = 1) = 1/2 holds
for Js � Jb, when the bottom layer and the extra half
layer decouple with the step edge being the surface of a
two-dimensional Ising model. In the thermodynamic limit,
where Tc(L + 1) = Tc(L), so that the above decoupling
considerations do not apply, we estimated from MC data
for films with up to 40 layers, a value of βse = 0.33 ±
0.02. Presumably, in that limit, βse is non-universal at the
surface transition, depending on the ratio Js/Jb.

4 Summary

Using density-matrix renormalization group and Monte
Carlo techniques, we studied critical properties of mag-
netic Ising films with various surface defects.

In particular, the effect of the local couplings at one
or two additional lines of magnetic adatoms on the sur-
face as well as at straight steps of monoatomic height has
been investigated, especially in the limiting cases of films
consisting of merely one layer and rather thick films.

In the case of a single layer,L = 1, with additional lines
of magnetic adatoms, the critical exponent of the magne-
tization at the surface defect is non-universal. The depen-
dence of its value on the local couplings, as compared to
that of the perfect two-dimensional situation, follows the
trends observed for the exactly soluble two-dimensional
Ising model with ladder and chain like bond-defects. The
value may be lower or larger than in the perfect situation,
1/8, corresponding to an increase or decrease in the mag-
netization at the defect line. Adding half a layer of spins,
one recovers, at the step, the surface critical exponent,
1/2, of the two-dimensional Ising model.

In the limit L → ∞, varying the strength of the sur-
face couplings may lead either to a surface or an ordinary
phase transition. The change of the critical exponent of
the magnetization at the defect has been found to depend
only fairly weakly, for both types of transition, on the film
thickness L in the case of one additional line of spins. At
steps, the critical exponent is argued to be 1/2, for films of
finite thickness and both kinds of transition, in agreement
with the simulations.

In the paper, we have not only presented the results
for the exponents, but also shown various magnetization
curves directly, so as to give an impression of the size of
the effects. This is meant to encourage further experimen-
tal work on such surface structures and their magnetic
properties.

We would like to thank K. Baberschke and J. Kirschner for
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Deutscher Akademischer Austauschdienst (DAAD) for finan-
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References

1. U. Gradmann, J. Magn. Magn. Mater. 100, 481 (1991);
P. Poulopoulos, K. Baberschke, J. Phys. Cond. Matt. 11,
9495 (1999).

2. P. Schilbe, K.H. Rieder, Europhys. Lett. 41, 219 (1998).
3. Z.Q. Qiu, J. Pearson, S.D. Bader, Phys. Rev. B 49, 8797

(1994).
4. W. Janke, K. Nather, Phys. Rev. B 48, 15807 (1993).
5. M.I. Marqués, J.A. Gonzalo, Eur. Phys. J. B 14, 317

(2000).
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